Posted on

Antitumor Effects of Cannabis sativa Bioactive Compounds on Colorectal Carcinogenesis

Abstract

Cannabis sativa is a multipurpose plant that has been used in medicine for centuries. Recently, considerable research has focused on the bioactive compounds of this plant, particularly cannabinoids and terpenes. Among other properties, these compounds exhibit antitumor effects in several cancer types, including colorectal cancer (CRC). Cannabinoids show positive effects in the treatment of CRC by inducing apoptosis, proliferation, metastasis, inflammation, angiogenesis, oxidative stress, and autophagy. Terpenes, such as β-caryophyllene, limonene, and myrcene, have also been reported to have potential antitumor effects on CRC through the induction of apoptosis, the inhibition of cell proliferation, and angiogenesis. In addition, synergy effects between cannabinoids and terpenes are believed to be important factors in the treatment of CRC. This review focuses on the current knowledge about the potential of cannabinoids and terpenoids from C. sativa to serve as bioactive agents for the treatment of CRC while evidencing the need for further research to fully elucidate the mechanisms of action and the safety of these compounds.

[ Read Full Text ]

Posted on

The Effect of Cannabis Plant Extracts on Head and Neck Squamous Cell Carcinoma and the Quest for Cannabis-Based Personalized Therapy

Simple Summary

The survival rate of head and neck cancer has only improved slightly over the last quarter century, raising the need for novel therapies to better treat this disease. This research examined the anti-tumor effects of 24 different types of cannabis extracts on head and neck cancer cells. Type III decarboxylated extracts with high levels of Cannabidiol (CBD) were the most effective in killing cancer cells. From these extracts, the specific active molecules were recognized. Combining CBD with Cannabichromene (CBC) in a 2:1 ratio made the effect even stronger. These findings can help doctors match cannabis extracts to treat head and neck cancer. CBD extracts enriched with the non-psychoactive CBC can offer patients more effective treatment. Further research is needed to develop new topical treatments from such extracts.

[ View Full Text ]

Posted on

CBD & Cervical Cancer

Pre-clinical evidence

A collection and occasional review of research on the effects of CBD on Cervical Cancer. Since CBD has been found to down regulate Id-1 we also include research on Id-1 and cervical cancer. Listed below in chronological order.

These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.

— FDA DISCLAIMER

If you would like to conduct an experiment of your own, please support us by purchasing from our sponsors at Epiphany Canna Solutions

PRODUCT SPONSOR
Posted on

CBD & Gastric Cancer

Here we take a look at the available research and anecdotal evidence supporting the use of CBD against gastric cancer.

Pre-clinical evidence

Two in vitro studies published in 2019 show cell cycle arrest and apoptosis in gastric cancer with no effect on normal healthy cells.

Anecdotal Evidence

Phil was diagnosed with advanced, HER2-positive, stage IV gastric cancer in late 2021. In addition to herceptin, cisplatin, and xeloda, Phil took high dose CBD oil. Phil and his wife Kim were recently interviewed by “Hope For Stomach Cancer”

It’s worth mentioning that in addition to my doctor-prescribed treatments, I was using high-dose CBD on the side to help manage my symptoms. I had great success with this. I feel like some of the miraculous improvements we saw can be attributed to using CBD. 

Phil Lago, Interview with Hope For Stomach Cancer

Phil was diagnosed in late October 2021 and started taking CBD at the end of November 2021. In March of 2022 Phil had another endoscopy with amazing results.

Phil takes approximately 200mg of high potency CBD 3 times daily.

These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.

– FDA DISCAIMER

Please support us by purchasing products from our online shop

PRODUCT SPONSOR
Posted on

Cannabidiol inhibits invasion and metastasis in colorectal cancer cells by reversing epithelial–mesenchymal transition through the Wnt/β-catenin signaling pathway

Abstract

Colorectal cancer (CRC) is the leading cause of cancer deaths worldwide, wherein distant metastasis is the main reason for death. The non-psychoactive phytocannabinoid cannabidiol (CBD) effectively induces the apoptosis of CRC cells. We investigated the role of CBD in the migration and metastasis of CRC cells. CBD significantly inhibited proliferation, migration, and invasion of colon cancer cells in a dose- or time-dependent manner. CBD could also inhibit epithelial–mesenchymal transition (EMT) by upregulating epithelial markers such as E-cadherin and downregulating mesenchymal markers such as N-cadherin, Snail, Vimentin, and HIF-1α. CBD could suppress the activation of the Wnt/β-catenin signaling pathway, inhibit the expression of β-catenin target genes such as APC and CK1, and increase the expression of Axin1. Compared to the control group, the volume and weight of orthotopic xenograft tumors significantly decreased after the CBD treatment. The results demonstrated that CBD inhibits invasion and metastasis in CRC cells. This was the first study elucidating the underlying molecular mechanism of CBD in inhibiting EMT and metastasis via the Wnt/β-catenin signaling pathway in CRC cells. The molecular mechanism by which CBD inhibits EMT and metastasis of CRC cells was shown to be through the Wnt/β-catenin signaling pathway for the first time.

[ View Full Text ]

Posted on

Cannabidiol exerts anti-proliferative activity via a cannabinoid receptor 2-dependent mechanism in human colorectal cancer cells

Abstract

Colorectal cancer is the third leading cause of cancer incidence and mortality in the United States. Cannabidiol (CBD), the second most abundant phytocannabinoid in Cannabis sativa, has potential use in cancer treatment on the basis of many studies showing its anti-cancer activity in diverse types of cancer, including colon cancer. However, its mechanism of action is not yet fully understood. In the current study, we observed CBD to repress viability of different human colorectal cancer cells in a dose-dependent manner. CBD treatment led to G1-phase cell cycle arrest and an increased sub-G1 population (apoptotic cells); it also downregulated protein expression of cyclin D1, cyclin D3, cyclin-dependent kinase 2 (CDK2), CDK4, and CDK6. CBD further increased caspase 3/7 activity and cleaved poly(ADP-ribose) polymerase, and elevated expression of endoplasmic reticulum (ER) stress proteins including binding immunoglobulin protein (BiP), inositol-requiring enzyme 1α (IRE1α), phosphorylated eukaryotic initiation factor 2α (eIF2α), activating transcription factor 3 (ATF3), and ATF4. We found that CBD repressed cell viability and induced apoptotic cell death through a mechanism dependent on cannabinoid receptor type 2 (CB2), but not on CB1, transient receptor potential vanilloid, or peroxisome proliferator-activated receptor gamma. Anti-proliferative activity was also observed for other non-psychoactive cannabinoid derivatives including cannabidivarin (CBDV), cannabigerol (CBG), cannabicyclol (CBL), and cannabigerovarin (CBGV). Our data indicate that CBD and its derivatives could be promising agents for the prevention of human colorectal cancer.

[ View Full Text ]

Posted on

Enhancement of Conventional Treatment of Cervical Cancer with CBD

Enhancement of Conventional and Photodynamic Therapy for Treatment of Cervical Cancer with Cannabidiol

Abstract

Cervical cancer (CC) is the fourth most diagnosed cancer in women worldwide. Conventional treatments include surgery, chemo- and radiotherapy, however these are invasive and may cause severe side effects. Furthermore, approximately 70% of late-stage CC patients experience metastasis, due to treatment resistance and limitations. Thus, there is a dire need to investigate alternative therapeutic combination therapies. Photodynamic therapy (PDT) is an alternative CC treatment modality that has been clinically proven to treat primary CC, as well as to limit secondary metastasis. Since PDT is a non-invasive localized treatment, with fewer side effects and lessened resistance to dose repeats, it is considered far more advantageous. However, more clinical trials are required to refine its delivery and dosing, as well as improve its ability to activate specific immune responses to eradicate secondary CC spread. Cannabidiol (CBD) isolates have been shown to exert in vitro CC anticancer effects, causing apoptosis post treatment, as well as inducing specific immune responses, which obstruct tumor invasion and angiogenesis, and so hinder CC metastatic spread. This review paper discusses the current conventional and alternative PDT treatment modalities for CC, as well as their limitations over the last 10 years. It has a particular focus on the combinative administration of CBD with these treatments in order to prevent CC secondary migration and so possibly encourage future research studies to focus on this synergistic effect to eradicate CC.

[ Read Full Text ]

Posted on

Cannabidiol on the Path from the Lab to the Cancer Patient: Opportunities and Challenges

Abstract

Cannabidiol (CBD), a major non-psychotropic component of cannabis, is receiving growing attention as a potential anticancer agent. CBD suppresses the development of cancer in both in vitro (cancer cell culture) and in vivo (xenografts in immunodeficient mice) models. For critical evaluation of the advances of CBD on its path from laboratory research to practical application, in this review, we wish to call the attention of scientists and clinicians to the following issues: (a) the biological effects of CBD in cancer and healthy cells; (b) the anticancer effects of CBD in animal models and clinical case reports; (c) CBD’s interaction with conventional anticancer drugs; (d) CBD’s potential in palliative care for cancer patients; (e) CBD’s tolerability and reported side effects; (f) CBD delivery for anticancer treatment.

[ View Full Text ]

Posted on

Inhalant Cannabidiol Inhibits Glioblastoma Progression Through Regulation of Tumor Microenvironment

Abstract

Introduction: Glioblastoma (GBM) is the most common invasive brain tumor composed of diverse cell types with poor prognosis. The highly complex tumor microenvironment (TME) and its interaction with tumor cells play important roles in the development, progression, and durability of GBM. Angiogenic and immune factors are two major components of TME of GBM; their interplay is a major determinant of tumor vascularization, immune profile, as well as immune unresponsiveness of GBM. Given the ineffectiveness of current standard therapies (surgery, radiotherapy, and concomitant chemotherapy) in managing patients with GBM, it is necessary to develop new ways of treating these lethal brain tumors. Targeting TME, altering tumor ecosystem may be a viable therapeutic strategy with beneficial effects for patients in their fight against GBM.

Materials and Methods: Given the potential therapeutic effects of cannabidiol (CBD) in a wide spectrum of diseases, including malignancies, we tested, for the first time, whether inhalant CBD can inhibit GBM tumor growth using a well-established orthotopic murine model. Optical imaging, histology, immunohistochemistry, and flow cytometry were employed to describe the outcomes such as tumor progression, cancer cell signaling pathways, and the TME.

Results: Our findings showed that inhalation of CBD was able to not only limit the tumor growth but also to alter the dynamics of TME by repressing P-selectin, apelin, and interleukin (IL)-8, as well as blocking a key immune checkpoint—indoleamine 2,3-dioxygenase (IDO). In addition, CBD enhanced the cluster of differentiation (CD) 103 expression, indicating improved antigen presentation, promoted CD8 immune responses, and reduced innate Lymphoid Cells within the tumor.

Conclusion: Overall, our novel findings support the possible therapeutic role of inhaled CBD as an effective, relatively safe, and easy to administer treatment adjunct for GBM with significant impacts on the cellular and molecular signaling of TME, warranting further research.

Posted on

Cannabidiol Induces Cell Death in Human Lung Cancer Cells and Cancer Stem Cells

Abstract

Currently, there is no effective therapy against lung cancer due to the development of resistance. Resistance contributes to disease progression, recurrence, and mortality. The presence of so-called cancer stem cells could explain the ineffectiveness of conventional treatment, and the development of successful cancer treatment depends on the targeting also of cancer stem cells. Cannabidiol (CBD) is a cannabinoid with anti-tumor properties. However, the effects on cancer stem cells are not well understood. The effects of CBD were evaluated in spheres enriched in lung cancer stem cells and adherent lung cancer cells. We found that CBD decreased viability and induced cell death in both cell populations. Furthermore, we found that CBD activated the effector caspases 3/7, increased the expression of pro-apoptotic proteins, increased the levels of reactive oxygen species, as well as a leading to a loss of mitochondrial membrane potential in both populations. We also found that CBD decreased self-renewal, a hallmark of cancer stem cells. Overall, our results suggest that CBD is effective against the otherwise treatment-resistant cancer stem cells and joins a growing list of compounds effective against cancer stem cells. The effects and mechanisms of CBD in cancer stem cells should be further explored to find their Achilles heel.

[ View Full Text ]